Hukum Gauss
Michael Faraday memperkenalkan cara menggambarkan medan (listrik, magnet, maupun gravitasi) melalui konsep garis gaya (garis medan). Garis gaya adalah garis - garis lengkung dalam medan yang dapat menunjukkan arah serta besarnya E pada setiap titik masing - masing dengan garis singgung dan kerapatan garisnya pada titik yang bersangkutan
Garis - garis gaya berawal pada titik muatan positif dan berakhir pada titik muatan negatif. Diantara titik awal dan titik akhir, garis gaya selalu kontinu dan tidak mungkin berpotongan, kecuali pada titik muatan lain yang terdapat diantaranyaJumlah garis - garis gaya listrik yang menembus suatu permukaan secara tegak lurus didefenisikan sebagai fluks magnetic. Bila diketahui kuat medan E, maka jumlah garis gaya d yang menembus suatu elemen dA tegak lurus pada E adalah :
Bila permukaan dA tidak tegak lurus maka jumlah garis yang keluar dari dA haruslah
Dimana dA = ndA atau n adalah vektor normal dan
Elemen luas dA berada pada permukaan S harga medan listrik E diambil semua titik pada permukaan S.
Fluks listrik total untuk seluruh permukaan
Tanda menyatakan integrasi yang meliputi seluruh permukaan A. Untuk permukaan tertutup, elemen dA tegak lurus permukaan dan arahnya keluar. Fluks total untuk permukaan tertutup
Ternyata ada hubungan yang erat antara fluks listrik pada suatu permukaan tertutup dengan muatan listrik yang berada dalam permukaan tersebut dan hubungan ini dikenal dengan hukum Gauss, yaitu ”jumlah garis gaya yang keluar dari suatu permukaan tertutup sebanding dengan jumlah muatan listrik yang dilingkupi oleh permukaan tetutup tersebut. Secara matematis.
Dimana S adalah suatu permukaan tertutup qi adalah jumlah muatan yang ada di dalam atau dilingkupi oleh permukaan tetutup S. jadi dengan hukum gauss kita dapat menentukan muatan yang ada di dalam permukaan tetutup, bila kita tahu berapa garis gaya yang keluar dari permukaan tetutup tersebut.
Contoh 4.
Di dalam ruang seperti pada gambar di atas terdapat medan listrik serba sama sebesar 10N/C berarah sumbu z kebawah. Hitung jumlah garis gaya yang keluar dari- Luas OABC (luas OABC = 2 m2)
- Luas OFDC (luas OFDC = 2 m2)
Penyelesaian
- Kuat medan listrik secara vector adalah E = -k 10 N/C Banyaknya garis gaya atau garis gaya banyaknya 20 buah dan arahnya menembus bidang OABC. Arah dA ada pada sumbu z positif sehingga d = dA
- pada bidang ini dA = -jdA sehingga
Pemakaian Hukum Gauss
Distribusi muatan dalam konduktor
Di dalam konduktor dapat dialirkan arus listrik sebab elektron pada konduktor dapat bergerak bebas. Berbeda dengan isolator, semua elektron terikat pada masing-masing atom sehingga bila ada medan listrik, elektron tetap tidak bergerak, akibatnya tidak ada arus yang mengalir. Bila pada konduktor diberi muatan, maka akan tejadi perubahan distribusi elektron bebas. Setelah semua elektron menempati posisinya, medan listrik dalam logam harus sama dengan nol, sebab bila tidak maka elektron bebas akan bergerak dalam logam. Bila terus diberikan (melampaui keadaan setimbang), muatan ada pada permukaan logam . jika dipilih sebuah permukaan S tepat di bawah, maka menurut hukum Gauss muatan pada permukaan itu harus nol sebab medan listrik pada permukaan logam harus nol, atau:Pelat Tipis Bermuatan
Bila kita mempunyai selembar pelat tipis dengan luas yang cukup besar diberi muatan +Q yang tersebar secara homogen pada pelat tersebut. Untuk menghitung kuat medan E pada jarak r, maka kita harus membuat permukaan gauss
Dari gambar dapat ditarik beberapa kesimpulan sebagai berikut- Karena pelat luas dan muatan tersebar homogen, maka medan listrik harus serba sama dan tegak lurus pada pelat.
- Karena garis gaya untuk sejajar dan mempunyai kerapatan sama maka kuat medan yang dihasilkan disetiap tempat juga sama, baik besar maupun arahnya.
Untuk menghitung kuat medan listrik, maka dibut sebuah permukaan Gauss. Bentuk permukaan Gauss dipilih dengan tujuan untuk mempermudah persoalan. Jika dipilih permukaan Gauss yang berbentuk silinder dengan panjang 2r dan penampangnya berbentuk lingkaran. Permukaan tersebut dibagi tiga bagian
- Tutup kanan S1 berbentuk lingkran
* Selubung silinder S2 berbentuk persegi empat
- Tutup kiri S3 juga berbentuk silinder
suku pertama bagian kanan persamaan dengan elemen luas dA diambil pada S1 sehingga dA=idA dengan i sebagai vector satuan pada sumbu x positif. Sedangkan kuat medan E = + iE jadi :
Suku kedua pada bagian kanan persamaan sama dengan 0 sebab dA pada S2 berarah tegak lurus E .
Pada suku ketiga, elemen luas dA pada S3 berarah ke kiri, jadi dA = -idA dan kuat medan listrik pada S3 juga berarah ke kiri, yaitu E = -iE jadi :
Akibatnya menjadi :Bola Bermuatan
Misalkan diambil sebuah bola terbuat dari bahan isolator dengan jari - jari R. Bola ini mempunyai muatan yang tersebar merata di dalam bola isolator tersebut. Kemudian, bagaimana menghitung kuat medan listrik di dalam dan diluar bola. Karena muatan tersebut merata dalam bola, rapat muatan dalam bola adalah :Kita buat permukaan gauss berupa bola dengan jejari r. Hukum Gauss menyatakan
Dimana Q adalah muatan listrik yang dilingkupi oleh S1 dalam hal ini :
Pada permukaan Gauss, dA = rdA, sehingga E = rE, karena baik medan listrik maupun elemen luasan, keduanya dalam arah radial. Harga E tak bergantung pada arah , jadi juga tak bergantung pada dA. Dengan demikian integral permukaan pada Gauss dapat ditulis sebagai :
dari hukum Gauss diperoleh :
Untuk medan diluar bola, kita pandang titik Q di luar bola dan berjarak r dari pusat bola . Kuat medan pada titik Q dapat dihitung dengan membuat permukaan Gauss melalui titik Q dan menggunakan hukum Gauss. Permukaan Gauss S dibuat membentuk bola dengan jari - jari r. Hukum Gauss menyatakan :
Muatan Q yang dilingkupi S sama dengan muatan tota; Q pada bola, Q = Q pada permukaan S, E sejajar dA, kuat medan E isotropic yang mempunyai besar sama pada semua titik di permukaan S. Hukum Gauss menjadi :
Persamaan diatas menyatakan bahwa kuat medan diluar bola sama dengan medan yang dihasilkan bila seluruh muatan Q terletak di pusat bola.
Tidak ada komentar:
Posting Komentar